New StoryMap: Urban Oil and Gas Production in Los Angeles County

Los Angeles County, California is the largest urban oil field in the country and home to thousands of active oil wells in very close proximity to homes, schools and parks.  Using state data, this new tools allows you to assess proximity of active or idle wells to your location and see how much oil or gas is produced nearby.  Overall, we find that 75% of active wells are within 2500 feet of residential buildings. 

The full StoryMap can be viewed here. A slideshow version of the StoryMap can be viewed below.

NEW RESEARCH: Estimating asthma incidence if air pollution levels had remained high and if the levels were lowered

Building off a recent study, our team of researchers had a study published this week in PNAS (Proceedings of the National Academy of Sciences of the United States of America). The study, looking at data from 9 communities in the Children’s Health Study can be found here.

Related research published earlier this year (Garcia et al. JAMA 2019) found strong associations between new-onset asthma in children and exposure to air pollutants, specifically NO2 and PM2.5. “We wanted to take these results a step further by estimating answers to ‘What-if’ scenarios, such as ‘What if the observed air quality improvements in the 1990s and early 2000s never happened?’ or ‘What if no one was exposed to more than 20 ppb NO2?’ This approach would provide us with an estimate of what would happen to asthma incidence rates in children given different shift in air pollution exposure,” said Erika Garcia, lead study author and researcher in the department of Preventive Medicine in the Keck School of Medicine.

9 southern California communities from the Children’s Health Study featured in this research paper. Map background layer: Google Maps.
Continue reading “NEW RESEARCH: Estimating asthma incidence if air pollution levels had remained high and if the levels were lowered”

NEW RESEARCH: Improved air quality leads to fewer kids developing asthma in nation’s most-polluted region

By LEIGH HOPPER, USC

PRESS COVERAGE: National Public Radio, Reuters,

Improved air quality in the Los Angeles region is linked to roughly 20 percent fewer new asthma cases in children, according to a USC study that tracked Southern California children over a 20-year period.

The findings appear in the May 21 issue of the Journal of the American Medical Association.

The research expands on the landmark USC Children’s Health Study, which found that children’s lungs had grown stronger in the previous two decades and rates of bronchitic symptoms decreased as pollution declined throughout the region.

“While the findings show a clear benefit of lower air pollution levels, there must be continued efforts to reduce pollution in our region,” said first author Erika Garcia, a postdoctoral scholar in the Department of Preventive Medicine at the Keck School of Medicine of USC. “We’re not in a place where we can stop and say, ‘Hey, we’ve arrived’.”

USC Infographic: Lower air pollution = less asthma
Graphic by Wendy Gutschow
Full study related infographic and printable PDF can be found here.

Los Angeles remains the nation’s most-polluted region, but air quality improvements between 1993 and 2006 cut nitrogen dioxide pollution by 22 percent and fine particulate matter by 36 percent.

Nitrogen dioxide can cause airway inflammation and airway hyper-responsiveness. Particulate matter — tiny particles of soot, smoke dust, etc. — can penetrate deep into the lungs and cause serious health problems.

To assess new-onset cases of asthma, USC scientists used data from 4,140 children in nine California communities: Alpine, Lake Elsinore, Lake Gregory, Long Beach, Mira Loma, Riverside, San Dimas, Santa Maria and Upland. Parents or guardians completed questionnaires regarding their children’s health. New-onset asthma was defined as a newly reported, physician-diagnosed case of asthma on an annual questionnaire during follow-up.

Researchers looked at rates of new-onset asthma alongside air pollution data collected from monitoring stations in each of those communities during three different periods: 1993-2001, 1996-2004 and 2006-2014. Using statistical methods, they separately examined four air pollutants and found that two were associated with reductions in new-onset asthma. They estimated that the nitrogen dioxide reductions achieved between 1993 and 2006 led to a 20 percent lower rate of asthma, while fine particulate matter reductions led to a 19 percent lower rate.

The findings add to the increasing scientific evidence supporting the role of air pollution in the development of new cases of asthma. Asthma is the most common chronic disease in children, affecting about 14 percent of children around the world, and a major contributing factor to missed time from school and work.

“This is encouraging news as it shows the number of new cases of asthma in children can be reduced through improvements in air quality,” said Kiros Berhane, a professor of preventive medicine at the Keck School of Medicine of USC and one of the study’s authors. “This is very likely a direct result of the science-based environmental policies that have been put in place.”

In addition to Garcia and Berhane, the study’s other authors are Talat Islam, Rob McConnell, Robert Urman, Zhanghua Chen and Frank Gilliland, all of the Department of Preventive Medicine at the Keck School of Medicine.

The research was supported by the National Institute of Environmental Health Sciences (grants P30ES007048, P01ES009581, R01ES021801, and R01ES025786), the National Heart, Lung and Blood Institute (grant R01HL118455), the United States Environmental Protection Agency (grants R826708 and RD831861), and the Hastings Foundation.

Dr. Rima Habre contributes to international panel on performance standards for low-cost air pollution sensors


Rima Habre holds an ultrafine particle monitor monitor while a plane flies overhead. Photo courtesy of Something in the Air documentary.

In June 2018, USC Environmental Health Centers exposure assessment expert Rima Habre, ScD, contributed to a two-day workshop hosted by the U.S. Environmental Protection Agency. Habre discussed essential features, design recommendations and performance targets specifically for wearable personal PM2.5 deployed in health research studies to assess personal exposures and investigate relationships with health outcomes in population studies. Dr. Habre’s presentation discussed her work in the UCLA/USC Los Angeles PRISMS center led by Dr. Alex Bui (UCLA Medical Imaging Informatics) where researchers are developing a multi-sensor informatics platform to enable mHealth studies of pediatric asthma. The platform, called BREATHE (Biomedical REAl-Time Health Evaluation for Pediatric Asthma) allows researchers to monitor environmental exposures, behaviors, medications and symptoms using Bluetooth-enabled wearable sensors in real-time and in context, to ultimately help predict and prevent asthma attacks in children. Dr. Habre’s presentation focused on ‘real-life compatibility’ design and performance needs for low-cost PM2.5 sensors deployed as part of an informatics ecosystem, including flexible wear options, battery life, communication needs, but also calibration well-suited for mobile deployments on humans moving in and across microenvironments in daily life.

Proceedings from the meeting that focused on performance targets for low cost sensors that measure fine particulate matter and ozone, are summarized in a research paper of which Habre is a co-author, published in April 2019 in the Atmospheric Environment journal.

Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Benedict, K., Habre, R. … Ning, Z. (2019). Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress. Atmospheric Environment: X, 2, 100031. https://doi.org/10.1016/J.AEAOA.2019.100031

For more information about the workshop, including links to all presentations, click here.

Learn more about Dr. Habre’s recent research here.

Children’s Health Study featured in new book

The following article on CityLab’s website, and can be read in full on the website. The article is an excerpt from the new book Choked: Life and Breath in the Age of Air Pollution (University of Chicago Press, $27.50).

How Scientists Discovered What Dirty Air Does to Kids’ Health

BETH GARDINER APRIL 22, 2019

The landmark Children’s Health Study tracked thousands of children in California over many years—and transformed our understanding of air pollution’s harms.

Across Southern California, in school gyms and libraries and lunchrooms, the children filed in, one by one, to put their lips around a plastic tube and blow with all their might. Thousands of them, year after year, in rich neighborhoods and poor ones, from the breezy towns along the Pacific coast to the hot, smoggy valley locals know as the Inland Empire.

Erika Fields was one of them, back in the 1990s, when she was in high school at Long Beach Poly, just outside Los Angeles. Even now, she’s the kind of person who raises her hand, who steps forward when volunteers are needed, and she liked being the only one called out of her class, walking down the hall to the quiet room where the breathing machine sat on a desk. She liked, too, the sense of being part of something bigger than herself, something that might really matter in the world.

In the empty classroom, the woman from the University of Southern California would hand her a sterile mouthpiece, attached by a tube to the spirometer ready to gauge the power of her lungs. Erika would give it a couple of practice puffs to get comfortable before the one that counted. “I remember her saying ‘Push, push, push. Blow all the air out.’ And then she would show me on her laptop, and I could see on a graph where I pushed the most,” and watch the line edge downward as her breath tailed off.

After that, there was a survey to fill out, a couple of pages about her health and her family, about smoking in the home and pets and diet and exercise, and then Erika would walk back down the hall, back to her classmates and the ordinary rhythms of the school day.

She didn’t know it then, but those brief, once-a-year interruptions to her routine helped lay the foundation for insights that would ultimately change scientists’ understanding of what air pollution does to the human body. In the vast stacks of accumulating numbers—results from Erika Fields’s breath tests and thousands of others— a team of patient researchers would discern the outlines of a threat that had, until then, been hard to see.

Photo/Courtesy of the South Coast Air Quality Management District

Ed Avol was one of those scientists. He grew up breathing the foul air of 1960s L.A., and he remembers well the hacking coughs that filled the playgrounds of his childhood. An engineer by training, he worked early in his career on hospital-based studies that examined the effects of dirty air as researchers had for decades, by pumping pollution into small rooms and watching volunteers exercise inside.

The team he was part of wasn’t allowed to make conditions in their smog chambers any worse than what Angelenos would experience outdoors, but in the 1980s that still gave them plenty of latitude. The researchers would monitor subjects as they pedaled, measuring their heart rates and oxygen levels, making note of their coughing, their shortness of breath, and their red, watery eyes.

By that time, it was clear to scientists that ozone—the main ingredient in the smog that still plagues L.A. and so many other cities—had an immediate effect on those who breathed it. And the impact could be far more serious than the discomfort Avol saw so plainly: When ozone blankets a city, asthmatics wheeze, emergency room visits spike, and even in healthy people, the lungs can grow inflamed and struggle to do their job.

Read the rest of this article, including more of the history of the Children’s Health Study, and interviews from CHS investigators including Ed Avol and Jim Gauderman here on CityLab’s website.

This article from CityLab is an excerpt from the new book Choked: Life and Breath in the Age of Air Pollution (University of Chicago Press, $27.50).

“A Day in the Life” program starts its second cohort with youth members of Pacoima Beautiful

On April 25, USC Community Engagement staff along with community partner Sandy Navarro from LA Grit Media began A Day in the Life program with youth from Pacoima Beautiful. The training kicked off the program during which youth from Pacoima will engage in community based air monitoring and storytelling through digital media. For more information on A Day in the Life click here.

Air pollution and air monitoring training during the Day in the Life workshop with youth members of Pacoima Beautiful.
Sandy Navarro of LA Grit Media presents her Storytelling for Social Change workshop during the training at Pacoima Beautiful.

Faculty spotlight for Public Health week: Carrie Breton

This post was published on the Department of Preventive Medicine’s website as part of their National Public Health Week series. Please find the original post here.

Environmental health researcher Carrie Breton, ScD, associate professor of preventive medicine, has dedicated the last decade to studying how environmental exposures—like air pollution—early in life contribute to the increased risk of disease later in life. In this Q&A learn about her work as part of a maternal and developmental research center.

Health issues arising from climate change and air pollution are getting more attention than ever, but what about the risks even before birth? At the Maternal And Developmental Risks from Environmental and Social Stressors (MADRES) Center, researchers including Carrie Breton, ScD, associate professor of preventive medicine, have become increasingly concerned with the impact environmental factors and stressors can have in utero.

Carrie Breton
What area of public health does your work focus on?

I conduct research centered on understanding how early-life environmental exposures affect risks for cardiovascular, respiratory and metabolic diseases later in life. As part of this research paradigm, I have focused on exploring the novel roles that epigenetic changes may have in affecting susceptibility to environmental exposures such as air pollution and tobacco smoke.

What drew you the topic of environmental exposure in particular?

I have a fundamental interest in understanding how the environment affects pregnancy and the developing child.

Continue reading “Faculty spotlight for Public Health week: Carrie Breton”